
CMPSCI 677 Distributed Operating Systems Spring 2024

Lecture 23: May 01
Lecturer: Prashant Shenoy Scribe: Chaitali Agarwal (2024)

23.1 NFS (contd)

23.1.1 Recap

NFS has a weak consistency model. Whenever a client application user modifies a file, the changes get written
to the cache at the client machine and later on the client can send the changes to the server. Meanwhile, if
the server receives a request for the same file from some other user it will send stale content.

23.1.2 Client Caching: Delegation

Figure 23.1: Delegation

NFS supports the concept of delegation as part of caching. The client receives a master copy of the file to
which the client can make updates. Upon completion, the client can send the file back to the server. This
is similar to the concept of upload/download model. Thus, the server is delegating the file to the client so
that the client can have a local copy. If another client tries to access the file, the server recalls the delegation
given to previous client. The previous client returns the file to the server and then the server uses the old
model where multiple clients can access the file by read/write requests to the sever.

Question: When does the server decide to delegate the file?
Answer: Since this feature is stateful, it is only present in version 4. If the server is serving only one client
then the server can delegate the file. Otherwise since the server is not the current owner of the file, the
server can not delegate and thus has to use the old model. For example, files in the user’s home directory
can be delegated, whereas binaries of application programs can not be delegated as multiple users might
access them.

Question: Is there a way to periodically update the server as in case of client failure the files may get lost?
Answer: It is possible for the client to flush the changes to the server in the background while it still holds
the master copy.

23-1



23-2 Lecture 23: May 01

23.1.3 RPC Failures

23.2 Coda Overview

23.2.1 DFS designed for mobile clients

- Nice model for mobile clients who are often disconnected

• Introduced in late 80-90s by CMU

• Use file cache to make disconnection transparent

• Designed for weakly connected devices which can be used at home, on the road, away from network
connection

• Serves as a precursor to Cloud drives

• It supplements file cache with user preferences. E.g. always keep this file in the cache or Supplement
with system learning user behavior.

• Uses replicated writes: Read once and write all. Writes are sent to all accessible replicas.

Question: Is coda using a remote access model or an upload download model?
Answer: It’s a little bit of both. When you’re connected, your changes can be uploaded or sent to the server
immediately, but you always have a cache. So when you are disconnected, you’re essentially just working
with files caches, in which case you it looks like an upload download model. So the answer is it actually
depends on whether you’re the state of the mobile device.

23.2.2 File Identifiers

Figure 23.2: Coda architecture

• Each file in Coda belongs to exactly one volume. A volume could be a disk or a partition of a disk.



Lecture 23: May 01 23-3

– Volume may be replicated across several servers. Identifiers include volume ID and file handle.

– Multiple logical(replicated) volumes map to the same physical volume

– 96 bit file identifier = 32 bit RVID + 64 bit file handle

– Each write increments the version number. Similar to versions maintained by git.

23.2.3 Server Replication

Figure 23.3: Server replication issues in Coda

Assume there are 3 servers and 2 clients connected over a network. In an ideal situation, the servers keep the
copies of the files consistent. If there is a partition in the network, the servers no more have the same copy
of the files. When network partition is fixed, the servers try to synchronize the files. If the files are different,
there may not be any problems. Problem arises if the servers access the same files due to write-write conflicts.

• Use replicated writes: read-once write-all

– Writes are sent to all AVSG(all accessible replicas)

• How to handle network partitions?

– Use optimistic strategy for replication

– Detect conflicts using a Coda version vector

– Example: [2, 2, 1] and [1, 1, 2] is a conflict: manual reconciliation

Question: What is the size of the version vector?
Answer: The number of entries in the version vector is equal to the number of servers that have the copy
of the file.

Question: If the file is being updated multiple times will the system keep incrementing the version?
Answer: It is possible. It will still give rise to the same kind of conflict.

Question: What does manual reconciliation mean?
Answer: It means that the user has to manually resolve the conflicts in the same way as the user is required
to resolve merge conflicts in Git.



23-4 Lecture 23: May 01

23.2.4 Disconnected Operation : Client disconnects from Server

• Hoarding State: Client is connected to the server and is actively downloading files into cache based
on some prediction based on current usage of the user. The client tries to cache copies that the user is
likely to access.

• Emulation State: When the client is disconnected from the server/internet and uses the cached
copies.

• Reintegration State: Client is connected to the internet/server and merges its updates with the
server.

Figure 23.4: Disconnected operation in Coda

• The state-transition diagram of a Coda client with respect to a volume.

• Use hoarding to provide file access during disconnection.

– Prefetch all files that may be accessed and cache(hoard) locally

– if AVSG=0, go to emulation mode and reintegrate upon reconnection

23.2.5 Transactional Semantics

• Network partition: part of network isolated from rest

– Allow conflicting operations on replicas across file partitions

– Reconcile upon reconnection

– Transactional semantics =¿ operations must be serializable

∗ Ensure that operations were serializable after thay have executed

– Conflict =¿ force manual reconciliation

23.2.6 Client Caching

• Cache consistency maintained using callbacks



Lecture 23: May 01 23-5

Figure 23.5: An example of nodes in xFS

23.3 xFS

23.3.1 Overview of xFS

• Key Idea: fully distributed file system [serverless file system]

– Remove the bottleneck of a centralized system

• xFS: x in ”xFS” = no server

• Designed for high-speed LAN environments

• All nodes participates in the File sharing

XFS combines two main concepts ; RAID - Redundant Array of Inexpensive Disks) and Log Structured
File Systems (LFS). It uses a concept of Network Stripping and RAID over a network wherein, a file is
partitioned into blocks and provided to different servers. These blocks are then made as a Software RAID
file by computing a parity for each block which resides on a different machine.

23.3.2 RAID : Redundant Array of Independent Disks

In RAID based storage, files are striped across multiple disks. Disk failures are to be handled explicitly in
case of a RAID based storage. Fault tolerance is built through redundancy.

Figure 23.6: Striping in RAID



23-6 Lecture 23: May 01

Figure 23.6 shows how files are stored in RAID. d1,...d4 are disks. Each file is divided into blocks and stored
in the disks in a round robin fashion. So if a disk fails, all parts stored on that disk are lost.

MTTF : Mean time to failure. It is about 5-6 years for a disk.

A typical disk lasts for 50,000 hours which is also knows as the Disk MTTF. As we add disks to the system,
the MTTF drops as disk failures are independent.

Reliability of N disks = Reliability of 1 disk÷N (23.1)

Probability of failure of a system = (1-p)
n

(23.2)

Consider a case where there are 70 disks in the system.

Reliability of system = 50, 000 Hours ÷70disks = 700hours

Disk system MTTF: Drops from 6 years to 1 month!

23.3.2.1 Advantages

• Load balanced across multiple disks

• Parallelizes the access to each disk and hence high throughput.

23.3.2.2 Disadvantages

• If a single disk fails, 1/N of the data of each file will be lost, without redundancy.

• The performance of this system depends on the reliability of disks.

We implement some form of redundancy in the system to avoid disadvantages caused by disk failures.
Depending on the type of redundancy the system can be classified into different groups:

23.3.2.3 RAID 0

Doesn’t have any redundancy. Only striping. Each files in stripped into multiple parts and stores on a
separate disk.

23.3.2.4 RAID 1 (Mirroring)

From figure 23.7, we can see that in RAID 1 each disk is fully duplicated. Each logical write involves two
physical writes. This scheme is not cost effective as it involves a 100% capacity overhead.



Lecture 23: May 01 23-7

Figure 23.7: RAID 1

Figure 23.8: RAID 4

23.3.2.5 RAID 4

This method uses parity property to construct ECC (Error Correcting Codes) as shown in Figure 23.8. First
a parity block is constructed from the existing blocks. Suppose the blocks D0, D1, D2 and D3 are striped
across 4 disks. A fifth block (parity block) is constructed as:

P = D0 ⊕D1 ⊕D2 ⊕D3 (23.3)

If any disk fails, then the corresponding block can be reconstructed using parity. For example:

D0 = D1 ⊕D2 ⊕D3 ⊕ P (23.4)

This error correcting scheme is one fault tolerant. Only one disk failure can be handled using RAID 4. The
size of parity group should be tuned so as there is low chance of more than 1 disk failing in a single parity
group.

Smaller writes are expensive, as the corresponding parity would need to be changed and it would require
reading the other members of the parity group.

Writes seen by the parity disk is N times the writes seen by the other disks.

Question: Where is the information about which files are on which disk?
Answer: The hardware controller serves the request internally to identify which blocks are stored on which
disk.

Question: In RAID, hardware controller keeps a track of data blocks and parity, what happens if controller
fails?
Answer: There will be problems in accessing the disk. That may be a point of failure. In case of Software
RAID this issue will not occur.

Question: Won’t the cost of accessing files increase since all disks are being accessed?
Answer: There are two ways to access a file, either block by block or accessing the whole file. If a request



23-8 Lecture 23: May 01

is made to access the whole file, in the above figure, eight requests to different disks would have been made,
making it parallel. If the entire file would have been saved on the same disk, it would have resulted in eight
requests being made to the single disk, which makes it sequential. Thus, accessing multiple disks does not
necessarily make it expensive.

23.3.2.6 RAID 5

Figure 23.9: RAID 5

One of the main drawbacks of RAID 4 is that all parity blocks are stored on the same disk. Also, there are
k + 1 I/O operations on each small write, where k is size of the parity block. Moreover, load on the parity
disk is sum of load on other disks in the parity block. This will saturate the parity disk and slow down entire
system.

In order to overcome this issue, RAID 5 uses distributed parity as shown in Figure 23.9. The parity blocks
are distributed in an interleaved fashion.

Note: All RAID solutions have some write performance impact. There is no read performance impact.

RAID implementations are mostly on hardware level. Hardware RAID implementation are much faster than
software RAID implementations.

Question: Can a file not be stored in the same disk as its parity?
Answer: The parity and the file stripe wouldn’t be in the same parity group. It can still handle 1 disk
failure.



Lecture 23: May 01 23-9

23.3.2.7 RAID Summary

• Basic idea: files are ”striped” across multiple disks

• Redundancy yields high data availability
- Availability: service still provided to user, even if some components failed

• Disks will still fail

• Contents reconstructed from data redundantly stored in the array
- Capacity penalty to store redundant info
- Bandwidth penalty to update redundant info

23.3.3 LFS: Log File Structure

In log structured File systems, data is sequentially written in the form of a log. The motivation for LFS
would be the large memory caches used by the OS. Larger, the size of cache, more the number of cache hits
due to reads, better will be the payoff due to the cache. The disk would be accessed only if there is a cache
miss. Due to the this locality of access, mostly write requests would trickle to the disk. Hence, the disk
traffic comes predominantly from write. In traditional hard drive disks, a disk head read or writes data .
Hence, to read a block, a seeks needs to be done i.e. move the head to the right track on the disk.

How to optimize a file system which sees mostly write traffic ?

The basic insight is to reduce the time spent on seek and waiting for the required block to spin by. Every
read/write request incurs a seek time and a rotational latency overhead. In general , random access layout
is assumed for all blocks in the disk wherein the next block is present in an arbitrary location. This would
require a seek time.

To eliminate this, a sequential form of writing facilitated by LFS can be used. The main idea of LFS is
that we try to write all the blocks sequentially one after the other. Thus LFS essentially buffers the writes
and writes them in contiguous blocks into segments in a log like fashion. This will dramatically improve the
performance. Any new modification would be appended at the end of the current log and hence, overwriting
is not allowed. Any LFS requires a garbage collection mechanism to de-fragment and clean holes in the log.

Hence, XFS ensures 1. fault tolerance - due to RAID, 2. Parallelism - due to blocks being sent to multiple
nodes. 3. High Performance - due to Log structured organization.

In SSD’s, the above mentioned optimization to log structures doesn’t give any benefits since there are no
moving parts and hence, no seek.

Question: Is there an overhead to maintain lookup as block of the files need to be tracked?
Answer: There is higher overhead to maintain the lookup. For every write, the data gets appended, so it
is meant to be for high write workloads. Metadata of the files is also written to the log. In case of lookups,
the metadata has to be accessed. Hence there is high overhead.

Question: Can the writes be cached?
Answer: Reads are directly cached. Writes are cached in batches i.e. a batch of writes are written as an
append-only log.



23-10 Lecture 23: May 01

Question: Is LFS one server?
Answer: LFS are traditionally designed as single disk system. Here, they are combined with xFS. The logs
are stripped across machines.

23.3.3.1 Log-structured FS Summary

• Provide fast writes, simple recovery, flexible file location method

• Key Idea: buffer writes in memory and commit to disk in large, contiguous, fixed-size log segments

– Complicates reads, since data can be anywhere

– Use per-file inodes that move to the end of the log to handle reads

– Uses in-memory imap to track mobile inodes

∗ Periodically checkpoints imap to disk

∗ Enables ”roll forward” failure recovery

– Drawback: must clean ”holes” created by new writes

23.3.4 xFS Summary

• Distributes data storage across disks using software RAID and log-based network striping.

• Dynamically distribute control processing across all servers on a per-file granularity
- Utilizes serverless management scheme.

• Eliminates central server caching using cooperative caching
- Harvest portions of client memory as a large, global file cache.

23.3.5 xFS uses software RAID and LFS

• Two limitations

– Overhead of parity management hurts performance for small writes

∗ Ok, if overwriting all N-1 data blocks

∗ Otherwise, must read old parity+data blocks to calculate new parity

∗ Small writes are common in UNIX-like systems

– Very expensive since hardware RAIDS add special hardware to compute parity

23.3.6 Combine LFS with Software RAID

Log written sequentially are chopped into blocks which a parity groups. Each parity group becomes a server
on a different machine in a RAID fashion



Lecture 23: May 01 23-11

23.4 HDFS - Hadoop Distributed File system

• It is designed for high throughput - very large datasets. Optimized for read only applications.

• It optimizes the data for batch processing rather than interactive processing.

• HDFS has a simple coherency model in which it assumes a WORM (Write Once Read Many) model.
In WORM, file do not change and changes are append-only.

23.4.1 Architecture

Figure 23.10: HDFS Architecture

There are 2 kinds of nodes in HDFS ; Data and Meta-data nodes. Data nodes store the data whereas,
meta-data keeps track of where the data is stored. Average block size in a file system is 4 KB. In HDFS, due
to large datasets, block size is 64 MB. Replication of data prevents disk failures. Default replication factor
in HDFS is 3.

23.5 GFS - Google File System

Master node acts as a meta-data server. It uses a file system tree to locate the chunks (GFS terminology for
blocks). Each chunk is replicated on 3 nodes. Each chunk is stored as a file in Linux file system.

23.6 Object Storage Systems

• Use handles(e.g., HTTP) rather than files names

– Location transparent and location independence

– Separation of data from metadata

• No block storage: objects of varying sizes



23-12 Lecture 23: May 01

• Uses
- Archival storage

– can use internal data de-duplication

- Cloud Storage: Amazon S3 service

– uses HTTP to put and get objects and delete

– Bucket: objects belong to bucket/partitions name space


